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A ROBUST CRAMER-RAO ANALOGUE

Gabriela Stangenhaus and H. T. David

1. INTRODUCTION AND SUMMARY

We give an analogue of the usual uni-parameter Cram~r-Rao develop-

ment, in which unbiasedness is replaced by median-unbiasedness, variance

is replaced by a dispersion measure first proposed by Alamo (1964), which

we call local kurtosis, and the information in the sample is computed in

terms of the first absolute moment of the sample score, rather than tile

second moment.

Given a sample x , with density f(x;O), consider statistics that

are median-unbiased for 0 ; i.e., statistics 6 such that

f f(x;O)dx = f f(x;O)dx = . (i.1)

x:6(x) < 0 x:kl(x) > 0

Given also the density g6 (-;0) of 6, define K(6;0), the local kurtosis

of k , by

K(6;0) = (2g (0;0)) -l.  (1.2)

We show below that, in the "regular" case, (1.1) implies the (L1 Cram6r-

Rao) inequality

K(S;0) (Ii(0)) , (1.3)

where I1  is an L 1 analogue of Fisher's information:

I f In f(x;O) lf(x;0)dx, (1.4)
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(1.3) being equally valid when the derivative in (1.4) is only a left

or a right derivative.

A "not-necessarily-regular" version of (1.3); i.e., a Chapman-

Robbins analogue (1951, relation (5)), is:

_0 (lim f(x;O+h) - f(x;O) -1K(6;0) > f - hfxO f(x;O)dx) - 
. (1.5)

jhjOf I- hf (x;O)

A necessary and sufficient condition for equality in (1.3) is:

6 6o
f in f(x;O)lf(x;O)dx I f(6 in f(x;O)) f(x;O)dxl (1.6a)

x:S(x) < 0 x:6(x) < 0

and

f in f(x; 0) 1f(x;e)dx f (- in f(x;0)) f(x;0)dxI, (1.6b)

x:6(x) > e x:6(x) > 0

and a family of pairs (f,6) meeting (1.1) aud (1.6) consists of the

densities

f L(x;O) = C exp L(x-0), - < x < , (1.7)

where 0 = R and L(.) is symmetric, satisfying certain smoothness

conditions (cf. section 4), the associated statistics 6 being the

maximum-likelihood estimates 6

U Z L(x i - &L(x)) = sup ,2 L(x,- 0). (1.8)

I i

K(;) in (1.2) is a local and scalar version of Lhe "risk curve"

as defined by relation (1.1) in Birnbaum (1961). The curve

a(.,O,r), monotone increasing to the left of 0 and monotone de- Codes
.d/or

.al
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creasing to the right, measures tail size of the distribution of 6

with respect to 0 , and the dispersion of 6 about 0 is measured in

non-scalar qualitative fashion by the elevation of this curve. When 6

is median-unbiased and possesses a density g6 (.;O), then a(0,0,6) =

and a'(O-,e,6 ) = la'(0+,0,6)1 = g6(0,0), so that K(6;0) is indeed a

natural scalar summarization of the elevation of a(-,0,6).

Alamo (1964) proposed K(6;0) in connection with a Cram~r-Rao

analogue for median-unbiased estimation, but failed to replace the

Fisherian bound based on 12(0) with the sharper one based on 11(0),

and thus did not achieve the full potential of his invention. Relations

(1.3) and (1.5) are given in Stangenhaus and David (1979), but under

restrictive regularity assumptions arising from deriving (1.3) and (1.5)

as limits of analogous L relations, p > 1. We do owe our use of theP

term "local kurtosis" to the development in that paper, in that ordinary

kurtosis does turn out, essentially, to be the natural measure of

dispersion for the case p = 4.

Modifications I , r > 1, of Fisher's information 12 appear for

example in Barankin's study of minimum s-norm unbiased estimation,

1/s + 1/r = 1, while I1  itself appears not to have been suggested
!1

heretofore. It must be noted, however, that all departures I
rt

r j 2, from Fisher's 1 may in fact be probleatical qua information.
2

None for example is, as required by Schutzenberger's (1951) axioms for

information measures, the expectation of a linear functional of In f.

Though the present point of view appears to be somewhat distinct,

our conclusions (or at least some of their specializations) do accord

with historical precedent. With regard to our Example 2.1 for example,

Birnbaum (1961) has identified the sample mid-range as "admissible"
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median-unbiased in the case of samples of size two from the uniform

distribution. Again, with regard to our Example 4.1, Laplace is

credited in Birnbaum (1964) with having identified the sample mean

as minimum-expected-absolute-deviation among median-unbiased estimates,

in the case of normal samples.

Each facet of our development, be it the median-unbiasedness or

local kurtosis of 6, or the information I, exhibits its own type

of insensitivity to tail behavior, the tail in question, in the case

of IV~ being that of the distribution of the sample score I- ln f(X;0).60

Thus our presentation seems properly viewed in the light of the broad

area of robust estimation (Huber, 1981).

2. A LOWER BOUND FOR THE LOCAL KURTOSIS
OF MEDIAN-UNBIASED ESTIMAI'ES

We consider an n-dimensional sample X = (X1, .... Xn) with a

density f(x;0) over 0 belonging to an open interval 0 of

R, and a statistic 6(X) A Y such that, for OcO0

Y possesses a density g(y;0) over R . (2.1)

For such 6 one has, for 0', ":O,

A0' A
101,0"1) f~o g 6 (y;0")dy = f f(x;0")dx 0(',"), (2.2)

x:6(x) < 0'

and analogously for the corresponding "upper-tail" functions y(0',")

and 4(0' ,0").

When 6 is median-unbiased for 0, one has as well (cf. (1.1)),

for 0 tO ,

1(0,0) - 0 0) (0, 0) - T(OO) = , (2.3)

.... ..
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and, for 0 and positive h such that both 0 and 0 + h are in 0,

(2.2) and (2.3) imply th(t

f O+h g6(y;O+h)dy A= y(O+h,O+h) -.1(0,0+h)

O

1(0+h,0+h) - _(O,O+h) - _(0,0) - _(O,0+h) (2.4)

Af [f(x;0) - f(x;0+h)]dx,

x:6(x) < 0

where the first, second and fourth equalities are due to (2.2), and the

third to (2.3).

Suppose now in'addition that, for Oc0 , g6 (y;O) is continuous

in y, in a neighborhood

N of y = 0, N co (2.5)

[len for positive Ii such that 0 + h NO , the law of the mean gives,

for 0 c 0,

f g+h6 (y;0+h)dy = hg (O+h'Ah; O+h) (2.6)

for the LHS of (2.4), where 0 < 1h < 1, and, dividing (2.4) by h

and taking absolute values, one finds

g(O+h.Xh; h +h) < f If(x;O+h) - f(x;O)/hldx , (2.7)

x:6(x) < 0

and (2.7) is seen to be equally valid for negative h such that

0 + hr N0

An analogous argument using l and leads as well to
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g(O+h. Ah; 0+h) < f if(x;0+h) - f(x;0)Idx (2.8)

x:6(x) > 0

and, adding (2.8) to (2.7), one concludes that

lrn 2g(O+h.Xh; O+h) < lrn f lf(x;O+h) - f(x;O)/hldx. (2.9)
Ihi+0h' - hH -0 fx

When in addition, for 0 cO,

g,(.;.) is continuous at (0,0), (2.10)

relation (2.9) yields relation (1.5).

We shall say that a pair (f,6) satisfying regularity conditions

(2.1), (2.5) and (2.10), and also (1.1) plus (1.5) with equality, is

l l-optimal.

Example 2.1. Consider f = f (x;O), equal to unity for 0 - < x < 0 + ,

and to zero otherwise, and also 6 the sample mid-range (smr). The pair

u' smr) is L1-optimal:

To begin with (David, 1981; problem 2.3.5(b)),

gsmr (y;0) = n(l-2Iy-01) n - l
, 0 - < y < 0 + ,

so that (f , smr) satisfies (1.1), (2.1), (2.5) and (2.10), and alsoU

K(smr;O) = (2g (0;0))- I 
= 1/2n

:1 smr

It therefore remains to show that the RHS of (1.5) equals 1/2n. But,

writing the integrand in the RHS of (1.5) as lhl-lf(x;0+h) - f(x;O)i,

we see that the integral in the RHS of (1.5) is the content of the

symmetric difference of two unit n-cubes displaced with respect to each

other by an amount rih along the equiangular line. This content is

?nh to order h, so that the RHS of (1.5) is indeed 1/2n.
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3. THE REGULAR CASE

Consistently with precedent, we identify the regular case as that

for which, when 0EO,

4 In f(x;0')I < G0(x); 0' cNo, xcRn, (3.1a)

where

f G 0(x)f(x;0)dx < + 0 OcO , (3.1b)

and where the derivative may be construed as one-sided, say as a right

derivative. In that case the RHS of (1.5) is bounded below by

f(x;O+h) - f(x;O) -1
(lim f hf(x;o) I f(x;O)dx) =
h *O+

f(x;O+h) - f(x;O) -1
(fj lim(- hf(x;O) )If(x;O)dx) = (I](0))

h+-O+

and relation (1.5) is seen to imply relation (1.3) under (3.1).

To study achievability for (1.3), we write it in the form

K(5;O) > (f/ In f(x;O)lf(x;0)dx + fI[6 in f(x;O)lf(x;O)dx)- 1 .

x:6(x) > 0 x:6(x) < 0 (3.2)

Now divide (2.4) by h, as was done in obtaining (2.7), and let h

tend to zero under assumption (3.1), but without absolute values taken.

We find

g6(0,0) If( f( In f(x;0))f(x;0)dxl,

x:6(x) < 0

and, correspondingly,
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g6 (O,0) 4 In f(x;0))f(x;0)d x;

x:6(x) > 0

in other words,

2g6(0,0) 6If(t in f(x;0))f(x;O)dxl

x:6(x) < 6

+ If(-tO in f(x;O))f(x;O)dxl. (3.3)

x:5(X) > 0

Relations (3.2) and (3.3) make clear that, indeed, conditions (1.6) are

necessary and sufficient for equality in (1.3), given conditions (2.1),

(2.5), (2.10) and (3.1).

We shall say that a pair (f,6) satisfying regularity conditions

(2.1), (2.5), (2.10) and (3.1), and also (1.1) and (1.6), is regular

L -optimal.

Example 3.1. Consider f = f (x;0) = exp-lx-01, - < x < +-, and

also 6 the median (med) of a sample of odd size n . The pair (f'., med)

is regular L1-optimal:

To begin with, it is seen by inspection of g med(y;O) (Johnson

and Kotz, 1970; p. 25) that (fS, med) satisfies (1.1), (2.1), (2.5)

and (2.10). In addition,

6 in f(cx;0) = [# of xi's > 0] - [# of x,'s < 0], (3.4)

and (3.4) is of one sign both in the region med < 0 and in the region

med - 0, so that (1.6) is true. Moreover (3.4) implies that

In nfs(x;0)j < n, so that (3.1) is seen to hold with G0(x) = n

70



9

4. AN L EXPONENTIAL FAMILY

As indicated in section 1, the pair (fL' 6L) in (1.7) and (1.8)

may be shown to be regular L -optimal under certain smoothness conditions
1

on the symmetric function L(-). To begin with, if (1.8) is to define

I uniquely, it must be that

L(') is strictly concave on R. (4.1)

Next, if (1.8) is to reduce to the analytically tractable condition

YL'(x -6 Lx)) = 0, (4.2)
iL(-

it must be that

L(') possesses a derivative L'(.) on R. (4.3)

Conditions (4.1) and (4.3) together of course also imply that

iL'(xi 0) is strictly increasing in 0, (4.4)

and are in fact sufficient to insure (1.1) and (1.6), as is now

demonstrated in Lemmas (4.2) and (4.3).

Lemma 4.1. Under conditions (4.1) and (4.3), the distribution of

is symmetric about 0

Proof. Under the stated conditions and their implications (4.2) and

(4.4), Pr{L (X) < e + c}

Pr{EL'(X - 0 - c) > 01 = Pr{-EL'(X i - 0 - c) < 0}

- 0) + C) < 01 Pr:L,'(Xi - o + C) < 01

Pr{YL'(X i - (0 - E)) < 01 = Pr{61 (X) > 0 - &1.

Lemma 4.2. Under conditions (4.1) and (4.3), 6L is median-unbiased

for 0 (i.e., (1.1) holds).
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Proof. By Lemma 4.1.

Lemma 4.3. Under conditions (4.1) and (4.3), (f L,6 ) satisfies (1.6).

Proof. Since

6
- In f(x;0) = - ;L'(x -0), (4.5)

we find, analogously to the argument in the proof of Lemma 4.1, that,

under conditions (4.1) and (4.3), and their implications (4.2) and

(4.4),

O In f(x;u) < 0 -+ 6 Ux) < .

Hence 0 L-- Inf< so n inbt hn60adwe
6Hence -f in f(x;0) is of one sign both when 6 (',) _ 0 and when

L (x) < e , which establishes (1.6).

Verifying condition (3.1) requires one further assumption; namely,

that there exist K(E) such that, for h F (-L, :) and xE R,

IL' (x-h) ! < K(F) - IL ' (x) I . (4.6)

Lemma 4.4. Condition (3.1) is met under (4.1), (4.3) and (4.6).

Proof. Given assumption (4.6), for 0' = 0 + h, hFr,,), and x R,

IL'(x-O')I = IL'((x-0) - h)j

< K(c) IL' (x-()) g0'(X) (4.7)

and

fg0, (x) fL(x;O)dx =

,rfmL O\ L(x-) dx+0 L(x-0C.K(c)[SIL (x-0);et dx + fIL'(x-U)le 0 )dx] (4.8)

!J



= C.K(c)[-f OL ' (z)eL(Z)dz + f0OL'(z)eL(Z)dz]
0 0

= 2C eL(O)K(c).

It follows that the function

G0, (x) = gx)

satisfies (3.1), since, by (4.7), for 0'FL (0-c, 0+c),

6 in fL(x;0')I < EIL'(xi-0')I

< go'C(x ) = GO'(x),

and also, by (4.8),

fG 0 ,cx) fL(x;O)dx = Xfg 0 , (x) fL(xi ; )

- 2nCe L(O)K(c)

It remains to verify (2.1), (2.5) and (2.10). Unfortunately it

seems difficult to adduce tractable conditions on L(-) insuring (2.1)

that are not at the same time unreasonably restrictive. Thus we simply

add (2.1) itself to the list of requirements for L(.):

"LL L(.) is such that 6 L possesses a density gL (4.9)

Given (4.9), it is however possible to condense (2.5) and (2.10) into

a single condition, through the observation that 0 is a location

parameter for the distribution of 6L ' This last is seen by adding

and subtracting 0 inside the main brackets of (4.2), whereupon it

follows that 6 L(X) - 0 is a function only of the parameter-free

_ _
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quantities (Xi-). At any rate the density g. of (4.9) may now Le
L

written

g6 L(Y;O) - g(y-O), (4.10)

iL

so that conditions (2.5) and (2.10) are seen to reduce to the single

condition

g in (4.10) is continuous in a neighborhood of 0. (4.11)

In summary, then, conditions on L(.) insuring that the pair

(fL2,L) in (1.7) and (1.8) is regular LI-optimal are (4.1), (4.3),

(4.6), (4.9) and (4.11).

Example 4.1. (N(0,1), ") is regular L1-optimal.

.'i
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